((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Find
Postfix Expression of following Infix Expression
A-B+C*D
|
((OPTION_A))
|
A-BC*D+
|
((OPTION_B))
|
AB-CD*+
|
((OPTION_C))
|
AB-+CD*
|
((OPTION_D))
|
NONE
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Binary
tree is implemented non-recursively. Complete following
pseudo-code
for
non-recursive in-order traversal
|
((OPTION_A))
|
a:
s.Push(currentNode);
b:
s.Pop( );
|
((OPTION_B))
|
a:
s.Push(currentNode -> leftChild);
b:
s.Pop(currentNode);
|
((OPTION_C))
|
a:
s.Push(currentNode -> rightChild);
b:
s.Pop( );
|
((OPTION_D))
|
a:
s.Push();
b:
s.Pop(currentNode );
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
If
the post order traversal gives a b - c d * + then the label of the
nodes 1, 2, 3 …
will
be
|
((OPTION_A))
|
+,
-, *, a, b, c, d
|
((OPTION_B))
|
a,
-, b, +, c, *, d
|
((OPTION_C))
|
a,
b, c, d, -, *, +
|
((OPTION_D))
|
-,
a, b, +, *, c, d
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Complete
following pseudo code of level order traversal of binary tree
|
((OPTION_A))
|
a:
q.Push(current->leftChild);
b:
q.Push(current->rightChild);
c:
q.IsFull( )
|
((OPTION_B))
|
a:
q.Push(current->leftChild);
b:
q.Push(current->rightChild);
c:
q.IsEmpty( )
|
((OPTION_C))
|
a:
q.Push(current->rightChild);
b:
q.Push(current->leftChild);
c:
q.IsEmpty( )
|
((OPTION_D))
|
a:
q.Push(current->rightChild);
b:
q.Push(current->leftChild);
c:
q.IsEmpty( )
|
((CORRECT_CHOICE))
(A/B/C/D)
|
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
It
is necessary for Huffman encoding tree to be,
|
((OPTION_A))
|
AVL
Tree
|
((OPTION_B))
|
Binary
Tree
|
((OPTION_C))
|
Complete
Binary Tree
|
((OPTION_D))
|
Binary
Search Tree
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Algorithm
doSomething(tree1, tree2)
{
if(tree1=NULL
and tree2=NULL)
ans=true;
else
if{
(tree1->data
== tree2->data)
{ans=doSomething(lchild(tree1),lchild(tree2))
If(ans)
Ans=
doSomething(Rchild(tree1),Rchild(tree2))
}
return
ans;
}
|
((OPTION_A))
|
Checking
leaf nodes
|
((OPTION_B))
|
Checking
if two trees are equal
|
((OPTION_C))
|
Find
left child
|
((OPTION_D))
|
Find
right child
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Int
DoSomething(BstNode* root)
{if(root->left
== NULL)
Return
root->data;
Else
Return
DoSomething(root->left)
}
What
does the above code do?
|
((OPTION_A))
|
Returns
any left child value
|
((OPTION_B))
|
Returns
smallest value
|
((OPTION_C))
|
Returns
intermediate value
|
((OPTION_D))
|
Returns
root value
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
DoSomething(BstNode*
root)
{if(root!=NULL)
cout<<root->data
DoSomething(root->left)
DoSomething(root->right)
}
What
does it do?
|
((OPTION_A))
|
Returns
level wise node values
|
((OPTION_B))
|
Returns
root value
|
((OPTION_C))
|
Returns
depth first searched values
|
((OPTION_D))
|
None
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
The
min. number of nodes in a binary tree of depth d (root at level 0)
is
|
((OPTION_A))
|
2d
– 1
|
((OPTION_B))
|
2d
+ 1 – 1
|
((OPTION_C))
|
d
+ 1
|
((OPTION_D))
|
D
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
The
post order traversal of a binary tree is DEBFCA. Find out the
preorder traversal
|
((OPTION_A))
|
ABFCDE
|
((OPTION_B))
|
ADBFEC
|
((OPTION_C))
|
ABDECF
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
The
height of a BST is given as h. Consider the height of the tree as
the no.
of
edges in the longest path from root to the leaf. The maximum no.
of
nodes
possible in the tree is?
|
((OPTION_A))
|
2h-1
-1
|
((OPTION_B))
|
2h+1
-1
|
((OPTION_C))
|
2h
+1
|
((OPTION_D))
|
2h-1
+1
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Suppose
a binary tree is constructed with n nodes, such that each node has
exactly
either zero or two children. The maximum height of the tree will
be?
|
((OPTION_A))
|
(n+1)/2
|
((OPTION_B))
|
(n-1)/2
|
((OPTION_C))
|
n/2
-1
|
((OPTION_D))
|
(n+1)/2
-1
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Suppose
we have numbers between 1 and 1000 in a binary search tree and
want
to search for the number 363. Which of the following sequence
could
not be the sequence of the node examined?
|
((OPTION_A))
|
2,
252, 401, 398, 330, 344, 397, 363
|
((OPTION_B))
|
924,
220, 911, 244, 898, 258, 362, 363
|
((OPTION_C))
|
925,
202, 911, 240, 912, 245, 258, 363
|
((OPTION_D))
|
2,
399, 387, 219, 266, 382, 381, 278, 363
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
A
binary search tree is formed from the sequence 6, 9, 1, 2, 7, 14,
12, 3, 8,
18.
The minimum number of nodes required to be added in to this tree
to form an extended binary tree is?
|
((OPTION_A))
|
3
|
((OPTION_B))
|
6
|
((OPTION_C))
|
8
|
((OPTION_D))
|
11
|
((CORRECT_CHOICE))
(A/B/C/D)
|
D
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
while
(cur != NULL)
{
cout<<
cur->data;
//
If this node is a thread node, then go to
//
inorder successor
if
(cur->rightThread)
cur
= cur->right;
else cur
= leftmost(cur->right);
}
What
does above code snippet do?
|
((OPTION_A))
|
Inorder
traversal in threaded binary tree
|
((OPTION_B))
|
BFS
in threaded binary tree
|
((OPTION_C))
|
Insertion
of a node in threaded binary tree
|
((OPTION_D))
|
Deletion
of a node in threaded binary tree
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
if
(root == NULL)
return
true;
bool
l = (root->left) ? getCountUtil(root->left, low, high,
count) : true;
bool
r = (root->right) ? getCountUtil(root->right, low, high,
count) : true;
if
(l && r && inRange(root, low, high))
{
++*count;
return
true;
}
return
false;
What
does above code snippetdo?
|
((OPTION_A))
|
Count
leaf nodes given range
|
((OPTION_B))
|
Count
internal nodes given range
|
((OPTION_C))
|
Count
subtreesin given range
|
((OPTION_D))
|
Count
branches given range
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
if
(node == NULL) return;
DoSomething(node->left);
DoSomething
(node->right);
Cout<<"\n
Deleting node:”<<node->data;
free(node);
What
does above code snippet do?
|
((OPTION_A))
|
Delete
a node
|
((OPTION_B))
|
Delete
entire tree
|
((OPTION_C))
|
Delete
left subtree
|
((OPTION_D))
|
Delete
only right subtree
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
if(node
== NULL)
return
0;
if(node->left
== NULL && node->right==NULL)
return
1;
else
return
ABC(node->left)+
ABC(node->right);
What
does the function ABC do?
|
((OPTION_A))
|
Count
leaf nodes
|
((OPTION_B))
|
Count
right subtree nodes only
|
((OPTION_C))
|
Count
left subtree nodes only
|
((OPTION_D))
|
None
of these
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
pCrawl
= root
set
initial stack element as NULL (sentinal)
while(pCrawl
is valid )
stack.push(pCrawl)
pCrawl
= pCrawl.left
while(
pCrawl = stack.pop() is valid )
stop
if sufficient number of elements are popped.
if(
pCrawl.right is valid )
pCrawl
= pCrawl.right
while(
pCrawl is valid )
stack.push(pCrawl)
pCrawl
= pCrawl.left
What
does above algorihtm snippet do?
|
((OPTION_A))
|
Finds
kth smallest element in binary tree
|
((OPTION_B))
|
Traverses
a tree
|
((OPTION_C))
|
BFS
in tree
|
((OPTION_D))
|
DFS
in tree
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
int
Tree(struct node* node)
{
if
(node == NULL)
return(true);
if
(node->left!=NULL && maxValue(node->left) >
node->data)
return(false);
if
(node->right!=NULL && minValue(node->right) <
node->data)
return(false);
if
(!isBST(node->left) || !isBST(node->right))
return(false);
return(true);
}
What
does Tree() do?
|
((OPTION_A))
|
Checks
whether tree has left subtree or not
|
((OPTION_B))
|
Checks
whether tree has right subtree or not
|
((OPTION_C))
|
Checks
whether tree is BST or not
|
((OPTION_D))
|
None
of these
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
void
print (struct node* root)
{
int
h = height(root);
int
i;
for
(i=1; i<=h; i++)
print1
(root, i);
}
void
print1(struct node* root, int level)
{
if
(root == NULL)
return;
if
(level == 1)
printf("%d
", root->data);
else
if (level > 1)
{
print1(root->left,
level-1);
print1(root->right,
level-1);
}
}
What
does print () do?
|
((OPTION_A))
|
Inorder
traversal using stack
|
((OPTION_B))
|
Traverses
a tree level wise
|
((OPTION_C))
|
Generally
traverses a treein random way
|
((OPTION_D))
|
None
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
int
find( node* a, node* b)
{
if
(a==NULL && b==NULL)
return
1;
if
(a!=NULL && b!=NULL)
{
return
(
a->data
== b->data &&
find(a->left,
b->left) &&
find(a->right,
b->right)
);} return
0;
}
What does above code snippet do?
|
((OPTION_A))
|
Finds
if two trees are identical
|
((OPTION_B))
|
Finds
if a tree and its mirror are identical
|
((OPTION_C))
|
Finds
the existence of left and right subtrees
|
((OPTION_D))
|
None
of these
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Void
func(node* node1)
{
if
(node1==NULL)
return;
else
{
node*
temp;
func(node1->left);
func(node1->right);
temp
= node1->left;
node1->left
= node1->right;
node1->right
= temp;
}
|
((OPTION_A))
|
Mirror
a tree
|
((OPTION_B))
|
Find
duplicate of a tree
|
((OPTION_C))
|
Finds
right subtree
|
((OPTION_D))
|
Finds
left subtree
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
int
func(struct node* node)
{
if
(node==NULL)
return
0;
else
{
/*
compute the depth of each subtree */
int
l = func(node->left);
int
r = func(node->right);
/*
use the larger one */
if
(l > r)
return(l+1);
else
return(r+1);
}
}
What
does func() do?
|
((OPTION_A))
|
Finds
height of a tree
|
((OPTION_B))
|
Finds
levels in a tree
|
((OPTION_C))
|
Finds
number of nodes in a tree
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
int
func(node* node)
{
node*
current = node;
/*
loop down to find the leftmost leaf */
while
(current->left != NULL) {
current
= current->left;
}
return(current->data);
}
What
does func() do?
|
((OPTION_A))
|
Finds
minimum element in a tree
|
((OPTION_B))
|
Finds
left leaves in a tree
|
((OPTION_C))
|
Finds
number of nodes in a tree
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
node
*abc(node* root, int n1, int n2)
{
if
(root == NULL) return NULL;
//
If both n1 and n2 are smaller than root, then LCA lies in left
if
(root->data > n1 && root->data > n2)
return
abc(root->left, n1, n2);
//
If both n1 and n2 are greater than root, then LCA lies in right
if
(root->data < n1 && root->data < n2)
return
abc(root->right, n1, n2);
return
root;
}
What
does abc() do?
|
((OPTION_A))
|
Finds
minimum element in a tree
|
((OPTION_B))
|
Finds
left leaves in a tree
|
((OPTION_C))
|
Finds
lowest common ancestor
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
bool
func(int pre[], int size)
{
int
nextDiff, lastDiff;
for
(int i=0; i<size-1; i++)
{
nextDiff
= pre[i] - pre[i+1];
lastDiff
= pre[i] - pre[size-1];
if
(nextDiff*lastDiff < 0)
return
false;;
}
return
true;
}
What
does func() do?
|
((OPTION_A))
|
Finds
minimum element in a tree
|
((OPTION_B))
|
Finds
left leaves in a tree
|
((OPTION_C))
|
Finds
number of nodes in a tree with 1 child
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
{
if(
n->right != NULL )
return
minValue(n->right);
struct
node *p = n->parent;
while(p
!= NULL && n == p->right)
{
n
= p;
p
= p->parent;
}
return
p;
}
What
does above do?
|
((OPTION_A))
|
Finds
minimum element in a tree
|
((OPTION_B))
|
Finds
inorder successor of a node
|
((OPTION_C))
|
Finds
number of nodes in a tree with 1 child
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
{if
(root == NULL) return ;
if
(root->key == key)
{
if
(root->left != NULL)
{
Node*
tmp = root->left;
while
(tmp->right)
tmp
= tmp->right;
pre
= tmp ;
}
if
(root->right != NULL)
{
Node*
tmp = root->right ;
while
(tmp->left)
tmp
= tmp->left ;
suc
= tmp ;
}
return
;
return
true;
}
What
does above code do?
|
((OPTION_A))
|
Finds
minimum and maximum element in a tree
|
((OPTION_B))
|
Finds
predecessor and successor of a node in a tree
|
((OPTION_C))
|
Finds
number of nodes in a tree with 1 child
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
{if
(root == NULL) return ;
if
(root->key == key)
{
if
(root->left != NULL)
{
Node*
tmp = root->left;
while
(tmp->right)
tmp
= tmp->right;
pre
= tmp ;
}
if
(root->right != NULL)
{
Node*
tmp = root->right ;
while
(tmp->left)
tmp
= tmp->left ;
suc
= tmp ;
}
return
;
return
true;
}
What
does above code do?
|
((OPTION_A))
|
Finds
minimum and maximum element in a tree
|
((OPTION_B))
|
Finds
predecessor and successor of a node in a tree
|
((OPTION_C))
|
Finds
number of nodes in a tree with 1 child
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
int
abc(struct node *root)
{
if
(isBST(root))
return
size(root);
else
return
max(abc (root->left), abc (root->right));
}
What
does abc() do?
|
((OPTION_A))
|
Finds
minimum subtree in a tree
|
((OPTION_B))
|
Finds
largest BST subtree
|
((OPTION_C))
|
Finds
left and right subtrees
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
void
abc(Node *root, int &c)
{
//
Base cases, the second condition is important to
//
avoid unnecessary recursive calls
if
(root == NULL || c >= 2)
return;
//
Follow reverse inorder traversal so that the
//
largest element is visited first
abc
(root->right, c);
//
Increment count of visited nodes
c++;
//
If c becomes k now, then this is the 2nd largest
if
(c == 2)
{
cout
<< "2nd largest element is "
<<
root->key << endl;
return;
}
//
Recur for left subtree
abc
(root->left, c);
}
What
does abc() do?
|
((OPTION_A))
|
Finds
minimum subtree in a tree
|
((OPTION_B))
|
Finds
largest element
|
((OPTION_C))
|
Finds
2nd
largest element
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
void
abc (struct node *root)
{
//
base case: tree is empty
if(root
== NULL)
return;
int
n = countNodes (root); int *arr = new
int[n];
int
i = 0;
storeInorder
(root, arr, &i);
qsort
(arr, n, sizeof(arr[0]), compare);
i
= 0;
arrayToBST
(arr, root, &i);
delete
[] arr;
}
What
does abc() do?
|
((OPTION_A))
|
Converts
a binary tree to BST
|
((OPTION_B))
|
Finds
largest BST subtree
|
((OPTION_C))
|
Finds
left and right subtrees
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
class
Node
{
int
data;
Node
*left, *right;
bool
t;
}
Which
data structure does the above class define?
|
((OPTION_A))
|
Threaded
binary tree
|
((OPTION_B))
|
Single
threaded binary tree
|
((OPTION_C))
|
Double
threaded binary tree
|
((OPTION_D))
|
BST
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
In
k ary tree what is relation between leaf nodes and internal nodes?
(L=
leaf nodes and I =internal nodes)
|
((OPTION_A))
|
L
= (k - 1)*I + 1
|
((OPTION_B))
|
L=K*I+1
|
((OPTION_C))
|
L=K-I
|
((OPTION_D))
|
L=K+1*I
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
int
abc(node* node)
{
if
(node==NULL)
return
0;
else
return(abc(node->left)
+ 1 + abc(node->right));
}
|
((OPTION_A))
|
Finds
number of nodes in tree
|
((OPTION_B))
|
Finds
number of nodes in left sub tree
|
((OPTION_C))
|
Finds
number of nodes in right sub tree
|
((OPTION_D))
|
None
of the above
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
In
a binary tree with n nodes, every node has an odd number of
descendants. Every node is considered to be its own descendant.
What is the number of nodes in the tree that have exactly one
child?
|
((OPTION_A))
|
0
|
((OPTION_B))
|
1
|
((OPTION_C))
|
(n-1)/2
|
((OPTION_D))
|
n-1
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Consider
a binary tree T that has 200 leaf nodes. Then, the number of nodes
in T that have exactly two children are _________.
|
((OPTION_A))
|
199
|
((OPTION_B))
|
200
|
((OPTION_C))
|
Any
number between 0 and 199
|
((OPTION_D))
|
Any
number between 100 and 200
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
A
binary tree T has 20 leaves. The number of nodes in T having two
children is
|
((OPTION_A))
|
18
|
((OPTION_B))
|
19
|
((OPTION_C))
|
17
|
((OPTION_D))
|
Any
number between 10 and 20
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
In
a complete k-ary
tree,
every internal node has exactly k children. The number of leaves
in such a tree with n internal nodes is
|
((OPTION_A))
|
Nk
|
((OPTION_B))
|
(n
– 1)k + 1
|
((OPTION_C))
|
n(k
– 1) + 1
|
((OPTION_D))
|
n(k
– 1)
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
A
complete n-ary tree is a tree in which each node has n children or
no children. Let I be the number of internal nodes and L be the
number of leaves in a complete n-ary tree. If L = 41, and I = 10,
what is the value of n?
|
((OPTION_A))
|
3
|
((OPTION_B))
|
4
|
((OPTION_C))
|
5
|
((OPTION_D))
|
6
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
The
hight of a tree is defined as the number of edges on the longest
path in
the
tree.The function shown in the pseudocode below is invoked as
height(root)
to compute the height of a binary tree rooted at the tree
pointer
root.
int
height
{
if (n= =NULL) return -1;
If(n->
left= =NULL)
If(n->
right= =NULL) ) return 0;h1 = height (n -> left);
Else
return B1;
Else
{ h1 = height (n -> left);
If
(n -> right = NULL) return (1 + h1);
Else
{ h2 = height (n ~ right);
Return
B2;
}
}
}
The
appropriate expression for the two boxes B1 and B2 are____.
|
((OPTION_A))
|
B1:(1
+ height(n-> right)) ,B2: (1 + max (h1,h2))
|
((OPTION_B))
|
B1:(1
+ height(n-> right)) ,B2: (1 + max (h1,h2))
|
((OPTION_C))
|
B1:(
height(n-> right)) ,B2: ( max (h1,h2))
|
((OPTION_D))
|
B1:(1
+ height(n-> right)) ,B2: ( max (h1,h2))
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Find
Huffman Code for node E. If Weights of nodes are as follows: A=10,
B=3,C=4,D=15,E=2.
|
((OPTION_A))
|
0001
|
((OPTION_B))
|
1010
|
((OPTION_C))
|
1000
|
((OPTION_D))
|
1000
|
((CORRECT_CHOICE))
(A/B/C/D)
|
C
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Post
fix expression of an expression tree is ab+cd-*. Find inorder
traversal of it
|
((OPTION_A))
|
a+b-c*d
|
((OPTION_B))
|
ab+c*d-
|
((OPTION_C))
|
a-cd+*
|
((OPTION_D))
|
None
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
DFS
of a tree is 10,4,8,6,5,7,9,12,11.Find BFS.
|
((OPTION_A))
|
10
4 12 3 8 11 6 9 5 7
|
((OPTION_B))
|
10
12 8 11 6 5 9 7 4 3
|
((OPTION_C))
|
10
8 12 11 5 9 6 7 3 4
|
((OPTION_D))
|
None
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
DFS
of a tree is : 10 5 12 4 7 6 9 8. If 7 is to be deleted it will be
replaced by which node?
|
((OPTION_A))
|
10
|
((OPTION_B))
|
4
|
((OPTION_C))
|
5
|
((OPTION_D))
|
8
|
((CORRECT_CHOICE))
(A/B/C/D)
|
D
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
DFS
of a tree is : 10 5 12 4 7 6 9 8. If 10 is to be deleted it will
be replaced by which node?
|
((OPTION_A))
|
7
|
((OPTION_B))
|
12
|
((OPTION_C))
|
5
|
((OPTION_D))
|
8
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
DFS
of a tree is : 10 5 12 4 7 6 9 8. If 4 is to be deleted it will be
replaced by which node?
|
((OPTION_A))
|
7
|
((OPTION_B))
|
12
|
((OPTION_C))
|
5
|
((OPTION_D))
|
8
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Inorder
traversal of a tree is: 40 20 30 10 70 50 60 80 90. When 20 is
deleted with which node is it replaced?
|
((OPTION_A))
|
30
|
((OPTION_B))
|
40
|
((OPTION_C))
|
10
|
((OPTION_D))
|
50
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Tree
has 7 nodes? How many orders of traversals are possible?
|
((OPTION_A))
|
256
|
((OPTION_B))
|
128
|
((OPTION_C))
|
7
|
((OPTION_D))
|
70
|
((CORRECT_CHOICE))
(A/B/C/D)
|
B
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
Following
nodes are inserted in BST:10 8 15 12 13 7 9. What is height of the
tree?
|
((OPTION_A))
|
4
|
((OPTION_B))
|
5
|
((OPTION_C))
|
3
|
((OPTION_D))
|
2
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
((MARKS))
(1/2/3...)
|
2
|
((QUESTION))
|
How
many nodes a complete binary tree of level 4 has?
|
((OPTION_A))
|
15
|
((OPTION_B))
|
13
|
((OPTION_C))
|
11
|
((OPTION_D))
|
9
|
((CORRECT_CHOICE))
(A/B/C/D)
|
A
|
((EXPLANATION))
(OPTIONAL)
|
|
VspecleoZrhot_ro Kevin Islam https://wakelet.com/wake/rLt3zGhCgXFJgKWCorM1m
ReplyDeletehuntsymwatchdrum